Attention? Attention!

[Updated on 2018-10-28: Add Pointer Network and the link to my implementation of Transformer.] [Updated on 2018-11-06: Add a link to the implementation of Transformer model.] [Updated on 2018-11-18: Add Neural Turing Machines.] [Updated on 2019-07-18: Correct the mistake on using the term “self-attention” when introducing the show-attention-tell paper; moved it to Self-Attention section.] [Updated on 2020-04-07: A follow-up post on improved Transformer models is here.] Attention is, to some extent, motivated by how we pay visual attention to different regions of an image or correlate words in one sentence....

Date: June 24, 2018 | Estimated Reading Time: 21 min | Author: Lilian Weng

Predict Stock Prices Using RNN: Part 2

In the Part 2 tutorial, I would like to continue the topic on stock price prediction and to endow the recurrent neural network that I have built in Part 1 with the capability of responding to multiple stocks. In order to distinguish the patterns associated with different price sequences, I use the stock symbol embedding vectors as part of the input. Dataset During the search, I found this library for querying Yahoo!...

Date: July 22, 2017 | Estimated Reading Time: 9 min | Author: Lilian Weng

Predict Stock Prices Using RNN: Part 1

This is a tutorial for how to build a recurrent neural network using Tensorflow to predict stock market prices. The full working code is available in github.com/lilianweng/stock-rnn. If you don’t know what is recurrent neural network or LSTM cell, feel free to check my previous post. One thing I would like to emphasize that because my motivation for writing this post is more on demonstrating how to build and train an RNN model in Tensorflow and less on solve the stock prediction problem, I didn’t try hard on improving the prediction outcomes....

Date: July 8, 2017 | Estimated Reading Time: 12 min | Author: Lilian Weng