Some Math behind Neural Tangent Kernel

Neural networks are well known to be over-parameterized and can often easily fit data with near-zero training loss with decent generalization performance on test dataset. Although all these parameters are initialized at random, the optimization process can consistently lead to similarly good outcomes. And this is true even when the number of model parameters exceeds the number of training data points. Neural tangent kernel (NTK) (Jacot et al. 2018) is a kernel to explain the evolution of neural networks during training via gradient descent. It leads to great insights into why neural networks with enough width can consistently converge to a global minimum when trained to minimize an empirical loss. In the post, we will do a deep dive into the motivation and definition of NTK, as well as the proof of a deterministic convergence at different initializations of neural networks with infinite width by characterizing NTK in such a setting. ...

Date: September 8, 2022 | Estimated Reading Time: 17 min | Author: Lilian Weng

Are Deep Neural Networks Dramatically Overfitted?

[Updated on 2019-05-27: add the section on Lottery Ticket Hypothesis.] If you are like me, entering into the field of deep learning with experience in traditional machine learning, you may often ponder over this question: Since a typical deep neural network has so many parameters and training error can easily be perfect, it should surely suffer from substantial overfitting. How could it be ever generalized to out-of-sample data points? ...

Date: March 14, 2019 | Estimated Reading Time: 22 min | Author: Lilian Weng